The impact of MLC transmitted radiation on EPID dosimetry for dynamic MLC beams.

نویسندگان

  • Philip Vial
  • Peter B Greer
  • Peter Hunt
  • Lyn Oliver
  • Clive Baldock
چکیده

The purpose of this study was to experimentally quantify the change in response of an amorphous silicon (a-Si) electronic portal imaging device (EPID) to dynamic multileaf collimator (dMLC) beams with varying MLC-transmitted dose components and incorporate the response into a commercial treatment planning system (TPS) EPID prediction model. A combination of uniform intensity dMLC beams and static beams were designed to quantify the effect of MLC transmission on EPID response at the central axis of 10 x 10 cm2 beams, at off-axis positions using wide dMLC beam profiles, and at different field sizes. The EPID response to MLC transmitted radiation was 0.79 +/- 0.02 of the response to open beam radiation at the central axis of a 10 x 10 cm2 field. The EPID response to MLC transmitted radiation was further reduced relative to the open beam response with off-axis distance. The EPID response was more sensitive to field size changes for MLC transmitted radiation compared to open beam radiation by a factor of up to 1.17 at large field sizes. The results were used to create EPID response correction factors as a function of the fraction of MLC transmitted radiation, off-axis distance, and field size. Software was developed to apply the correction factors to each pixel in the TPS predicted EPID image. The corrected images agreed more closely with the measured EPID images in areas of intensity modulated fields with a large fraction of MLC transmission and, as a result the accuracy of portal dosimetry with a-Si EPIDs can be improved. Further investigation into the detector response function and the radiation source model are required to achieve improvements in accuracy for the general case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantifying the performance of in vivo portal dosimetry in detecting four types of treatment parameter variations.

PURPOSE To quantify the ability of electronic portal imaging device (EPID) dosimetry used during treatment (in vivo) in detecting variations that can occur in the course of patient treatment. METHODS Images of transmitted radiation from in vivo EPID measurements were converted to a 2D planar dose at isocenter and compared to the treatment planning dose using a prototype software system. Using...

متن کامل

Dynamic MLC Tracking Using 4D Lung Tumor Motion Modelling and EPID Feedback

Background: Respiratory motion causes thoracic movement and reduces targeting accuracy in radiotherapy. Objective: This study proposes an approach to generate a model to track lung tumor motion by controlling dynamic multi-leaf collimators. Material and Methods: All slices which contained tumor were contoured in the 4D-CT images for...

متن کامل

Practical approach for pretreatment verification of IMRT with flattening filter‐free (FFF) beams using Varian portal dosimetry

Patient-specific pretreatment verification of intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT) is strongly recommended for all patients in order to detect any potential errors in treatment planning process and machine deliverability, and is thus performed routinely in many clinics. Portal dosimetry is an effective method for this purpose because of its pro...

متن کامل

A study on needed or unneeded ReDosimetry and Recomissioning of a linac with Add on MLC by Comparing Dosimetric Data

Introduction: Today different uses of multileaf collimators(MLC) in different techniques of radiotherapy are common. Due to the use of this facility it is possible to have maximum radiation dose to target volumes and minimum radiation dose to critical tissues surronding treatment volumes. But there are numerouse Linear accelerators in IRAN without MLC. Because of high price of...

متن کامل

The impact of continuously‐variable dose rate VMAT on beam stability, MLC positioning, and overall plan dosimetry

A recent control system update for Elekta linear accelerators includes the ability to deliver volumetric-modulated arc therapy (VMAT) with continuously variable dose rate (CVDR), rather than a number of fixed binned dose rates (BDR). The capacity to select from a larger range of dose rates allows the linac to maintain higher gantry speeds, resulting in faster, smoother deliveries. The purpose o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 35 4  شماره 

صفحات  -

تاریخ انتشار 2008